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NOTE 

On the State of a Binary Gas Mixt.ure Near a Catalytic Surface 

It is well known that the continuum 
equations of energy and momentum and 
their boundary conditions are strictly valid 
in the instance of a dilute gas only when 
the Knudsen number, l/a.,+ can be consid- 
ered as zero. 

For many systems involving gases at 
pressures of the order of atmospheric and 
higher, the Knudsen number is sufficiently 
small that the noncontinuum effects arc 
unimportant. However, when one has, for 
example, a reaction occurring at the walls 
in the pores of a catalyst. particle, or at the 
surface of a small particle, the Knudsen 
number can be large and the continuum 
considerations are no longer valid. 

It is the purpose of this note to point out 
the deviation from continuum behavior 
found in a diffusing binary gas system near 
a catalytic surface. The particular physical 
system to be studied consists of an infinite 
plane catalytic surface at which the re- 
arrangement reaction 1 + 2 is occurring. In 
the regimes specified by the Knudsen num- 
ber, we shall, therefore, be considering only 
t.he limiting noncontinuum case where 
l/a + 0. 

Only the essentials of the derivation 
necessary for understanding the validity of 
the results will be sketched here. 

We calculate! the concentration distribu- 
tion of molecules of type 1 and 2 near the 
surface from the single particle distribution 
function j@, V) obtained by solution of the 
Boltzmann equation (1) : 

* I = molecular mean free path; a = a charac- 
teristic dimension of the physical system; for a 
cylindrical pore of a catalyst particle “a” would 
be the port radius, or for a catalyst particlc “a” 
would bc the particle radius. 

Vi * (aji/ar) = aefJat i = 1,2 (1) 

where aefi/at is the rate of change owing to 
encounters in the distribution function ji at 
a fixed point in the system, r; Vi is the veloc- 
ity of a molecule of species i. 

In the solution of Eq. (1) we consider only 
a small deviation fi(‘) from local thermody- 
namic equilibrium, fi(‘) : 

fi = fir3 + fi”’ i = 1,2 (2) 

The effect of this assumption is that we are 
limited to a consideration of catalytic sur- 
face reactions of low efficiency. That is, the 
number of molecules of 2 created and 1 
destroyed at the surface at a given time 
must be small relative to the total number 
of each species present at the surface. 

Now Zefi/at in Eq. (1) is a nonlinear 
term which we linearize in the following 
manner in order to obtain a solution of 
Eq. (1) in a useful form: 

vi-(afi/ar) = Bf,“’ i = 1,2 (3) 
where 0 can easily bc shown to represent 
correctly the mutual diffusion of Maxwel- 
lian molecules, and : 

where D1* is the mutual diffusion coeffi- 
cient, k, Boltzmann’s constant; T, the tem- 
perature; and m the molecular mass. This 
Maxwellian model means that one is as- 
suming only 1-2 collisions as giving rise to 
the mutual diffusion process. 

The details of the deduction of the inte- 
gral equations for fi are analogous to the 
deduction of Welander (2) for the tem- 
perature-jump problem and will not be 
presented here. 
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For the simple system of a rearrange- 
ment reaction and the collision model 
chosen, Eq. (3), the integral equations 
arising in the solution for fi are not cou- 
pled and have the same form as the integral 
equation arising in the slip-velocity prob- 
lem. The eigenvalue of the equation of the 
slip-velocity problem has been calculated 
from quadratures (2, 5) and a numerical 
solution of the equation has been obtained 
(3) * 

Using the results of the slip-velocity 
problem, it may be shown that the concen- 
tration profile of species 2 for the present 
system has the form: 

n-49 - n2(0) 
Wddf>, = -5 - KM) - GdO)l (5) 

where .?J is a dimensionless distance: 

c: = O(nt/2kT)“2x 

and x is the perpendicular distance in the 
gas mixture from the catalytic surface 
which is taken at 2 = 0; (dn,/dE) ,,, repre- 
sents the constant value of the concentra- 
tion gradient of 1 found as [+ 00. The 
function Gz (5) may be represented by the 
approximate relation: 

l.Ol[l.OO - 0.30(0.36[ In t + 1.00)e-1~86E] 
(6) 

For the assumptions of this problem the 
total number density is constant, so that 
the profile for n,(t) is easily inferred. It 
may be seen that n, increases much more 
rapidly as one nears the wall than pre- 
dicted by the corresponding linear con- 
tinuum result. In a sense, the fraction of 
molecules leaving the wall relatively rich 
in 2 tends to “sweep” away the fraction of 
incoming molecules, relatively rich in 1. 

If one assumes, as is customary in con- 
tinuum calculations, that the concentration 
gradient is constant up to the surface, one 
has the obvious expression for the concen- 
tration profile : 

here n’,(f) denotes the number density as 

determined from the erroneous assumption 
of a linear profile up to the surface.. 

Now at an infinite distance from the sur- 
face we require that nLi( cc) = R( a,). 
Therefore: 

I = [Gz(w) - Gs(O)l 
(8) 

Rewriting this result in terms of species 
1 we have from Eqs. (4) and (6) : 

nl(0) - n’l(0) = 
Dl2 

- $(2kT/m)112 [0.3071(dnl/dz), (9) 

Introducing the mean free path, I, Eq. 
(9 ) becomes: 

An,(O) = nl(0) - dl(0) = 
-&[0.307](dnJdz), (10) 

where a! z 3/4 is a constant. 
Equation (10) has a purely formal simi- 

larity to the slip-velocity and temperature- 
jump expressions. Within the limits of the 
present analysis, indicated below, the mag- 
nitude of the error introduced by the er- 
roneous assumption of linear concentration 
profiles in the present diffusion system may 
be seen from Eq. (10). It can be observed 
that the magnitude of the difference be- 
tween the correct noncontinuum, n,(O), 
and incorrect continuum, npl (0)) surface 
concentrations for a fixed gradient is de- 
pendent only on the mean free path, 1, and 
increases as the mean free path. 

In the instance of a reaction occurring 
at the surface of a catalyst particle or pore, 
the foregoing considerations for an infinite 
plane wall may be taken to apply so long 
as one remains in what is termed the “slip- 
flow regime.” The “slip-flow regime” has 
been found (4) to have the Knudsen num- 
ber range 0 < l/a < 0.25 where “a” de- 
notes the radius of either the catalyst par- 
ticle or pore. The extension of these results 
to l/a > 0.25 and to Finary systems of un- 
equal molecular masses would be of par- 
ticular interest. 
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